【中学数学1年生】素数と素因数分解【正の数・負の数(第8回)】

正の数・負の数

素数

素数

1とその数以外に約数がない自然数を素数といいます。

例)2
 2の約数は1と2だけなので2は素数となります。

例)3
 3の約数は1と3だけなので3は素数となります。

例)4
 4の約数は1と2と4となりますので、4は素数ではありません。

問題

20以下の素数は全部いいなさい。

素因数分解

素因数・素因数分解

素数である約数を素因数といいます。また自然数を素因数だけの積の形に表すことを素因数分解するといいます。

例)\( 15= 3 \times 5\)
 3も5も素数である約数(素因数)であるので\( 3 \times 5\) は15の素因数分解です。
例)\( \)
問題

次の数を素因数分解しましょう。

(1) 68
(2) 24

(3) 144

100以下の素数

100以下の素数…2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

素因数分解と暗号(雑談)

14を素因数分解すると\(2 \times 7 \)となり、簡単に素因数分解をすることができます。しかし、数字が大きくなると素因数分解をすることが難しくなります。例えば、493を素因数分解をするとどうなるでしょうか?すぐに答えることはできないのではないでしょうか?しかし、\( 17 \times 29\)を計算することは簡単で\( 17 \times 29=493\)と計算することができます。大きい数の素因数分解の計算は、コンピューターを使っても時間がかかりすぎ、現実的ではありません。このような、素因数分解は大変であるものの掛け算は簡単であるという一方性を利用して暗号技術に利用されています。

コメント